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1. Introduction

In a previous paper [1], we have developed a new geometrical framework for Yang–Mills
theories on a principal fibre bundle P → M , as an appropriate quotient space of the standard
first jet-bundle.

The approach proposed in [1] allows us to take care from the beginning only of the
physical degrees of freedom of the theory.

First, we have investigated the geometrical properties of the resulting mathematical setting,
so extending some fundamental geometrical structures and constructions of standard jet-bundle
geometry to the newly defined space.

Then, we have deduced the field equations from a variational problem formulated through
a regular Poincaré–Cartan form, so letting the variational principle itself ensure the kinematical
admissibility of critical sections.

Finally we have investigated the relationships between symmetries and conserved
quantities in the newer scheme, stating a generalized Noether theorem.

The whole construction proposed in [1] has been developed by assuming a trivialization
of P is fixed, once and for all, thus focusing our attention on a local analysis. By doing so,
we have dealt with Yang–Mills fields and not with principal connection 1-forms. Actually,
this way of proceeding is standard enough when one works on flat space–times or with trivial
principal bundles.

Nevertheless, as underlined in a referee report on [1], a global gauge-independent
formulation of the proposed theory would be more appropriate and, from a geometrical
point of view, more elegant too. This is the aim of the present work.
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In this addendum, we show in fact that the whole geometrical machinery developed in [1]
admits a genuinely gauge-invariant formulation.

We start by considering the first jet-bundle J1(J1P/G) of the bundle of principal
connections J1P/G → M,G denoting the structural group of P. Following the main idea of
our previous work, we quotient J1(J1P/G) with respect to a suitable equivalence relation and
extend all the results stated in [1] to the corresponding quotient space.

Also, we present a Hamiltonian description of the field equations, which could lay the
grounds for further developments (at present under investigation) in the direction of dual
Lagrangian field theories [2, 3].

2. The geometrical framework

Let π : P → M be a principal fibre bundle, with structural group G, referred to local fibred
coordinates xi, gµ, i = 1, . . . , m = dim M,µ = 1, . . . , r = dim G. Changes of trivialization
of P give rise to coordinate transformations in P of the form

x̄i = x̄i (xj ) ḡµ = (γ −1(x) · g)µ (2.1)

where γ : U ⊂ M → G (U an open set) are arbitrary smooth maps, and γ −1(x) · g indicates
the product between γ −1 and g in G.

Let J1P denote the first jet-bundle of π : P → M , referred to local jet-coordinates
xi, gµ, g

µ

i

(� ∂gµ

∂xi

)
.

As is well known, the space of principal connections on P may be identified with the
quotient space J1P/G, the quotient being performed with respect to the action generated by
the first jet-prolongations J1Rr of the right maps Rr,∀ r ∈ G.

In more detail, the action of the maps J1Rr on J1P is given by
(
xi, gµ, g

µ

i

) →
(xi, (gr)µ, gν

i V
µ
ν (g, r), V µ

ν denoting the differential of the right multiplication in G.3 Local
coordinates on the quotient space J1P/G are xi, v

µ

i := gν
i V

µ
ν (g, g−1).

The manifold J1P/G is an affine bundle over M and principal connections on P may be
viewed as sections ω : M → J1P/G. We may put on J1P/G local coordinates xi, a

µ

i := −v
µ

i

in such a way that every section ω : x → (
x, a

µ

i (x)
)

yields the corresponding principal
connection 1-form (still denoted by ω) on P

ω(x, g) = ωµ(x, g) ⊗ eµ := [
Ad(g−1)µν aν

i (x) dxi + Wµ
ν (g−1, g) dgν

] ⊗ eµ (2.2)

where Adµ
ν and Wµ

ν denote respectively the adjoint representation of G and the differential of
the left multiplication in G, while eµ(µ = 1, . . . , r) indicate a basis of the Lie algebra g of G.

It is worth noting that changes of coordinates (2.1) in P induce coordinate transformations
in J1P/G expressed as

x̄i = x̄i (xj ) ā
µ

i =
[
Ad(γ −1)µν aν

j + Wµ
ν (γ −1, γ )

∂γ ν

∂xj

]
∂xj

∂x̄i
. (2.3)

Now, let π̂ : J1(J1P/G) → M be the first jet-bundle associated with the bundle J1P/G → M .

Local coordinates on J1(J1P/G) are xi, a
µ

i , a
µ

ij

(� ∂a
µ

i

∂xj

)
undergoing transformation laws (2.3)

together with

ā
µ

ik = ∂xj

∂x̄i

∂xh

∂x̄k

[
Ad(γ −1)µν aν

jh +
∂Ad(γ −1)µν

∂xh
aν

j +
∂η

µ

j

∂xh

]
+

∂2xj

∂x̄k∂x̄i

[
Ad(γ −1)µν aν

j + η
µ

j

]
(2.4)

where η
µ

j (x) := Wµ
ν (γ −1(x), γ (x))

∂γ ν(x)

∂xj .
3 More explicitly, if we denote by g = x · y the product in G, we set dgµ = dxλV

µ
λ + dyλW

µ
λ .
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Borrowing from [1], we define in J1(J1P/G) the following equivalence relation: given
two points w1 = (

xi, a
µ

i , a
µ

ij

)
and w2 = (

xi, â
µ

i , â
µ

ij

) ∈ J1(J1P/G) with π̂(w1) = π̂(w2) ∈
M , then w1 ∼ w2 ⇔ a

µ

i = â
µ

i and
(
a

µ

ij − a
µ

ji

) = (
â

µ

ij − â
µ

ji

)
. Making use of transformation

laws (2.4), it is a straightforward matter to check that this equivalence relation is well defined
since it is independent of the choice of local coordinates.

From a geometrical viewpoint, taking the very definition of J1(J1P/G) as well as the
representation (2.2) into account, it is easily seen that the above-introduced equivalence relation
amounts to stating two principal connection 1-forms ω1 and ω2 are equivalent if they have a
first-order contact with respect to the exterior differentiation4. More explicitly, if ω1 and ω2

denote two principal connection 1-forms on P (i.e. two sections of J1P/G → M) representing
two points w1, w2 ∈ J1(J1P/G) (with x = π̂(w1) = π̂(w2) ∈ M) respectively, then we say
that

w1 ∼ w2 ⇔ ω1(p) = ω2(p) and dω1(p) = dω2(p) ∀p ∈ π−1(x) ⊂ P.

We wish to stress that this equivalence relation is related to the exterior derivative and not to the
standard first-order contact condition, usually encountered in the definition of first jet-bundles.

We denote by J (P ) the quotient space J1(J1P/G)/∼ and by ρ : J1(J1P/G) → J (P )

the canonical projection. Also, we put on J (P ) local coordinates xi, a
µ

i , A
µ

ij := 1
2

(
a

µ

ij −
a

µ

ji

)
(i < j ), subject to the transformation laws (2.3) and

Ā
µ

ik = ∂xj

∂x̄i

∂xh

∂x̄k

[
Ad(γ −1)µν Aν

jh +
1

2

(
∂Ad(γ −1)µν

∂xh
aν

j − ∂Ad(γ −1)µν

∂xj
aν

h

)

+
1

2

(
∂η

µ

j

∂xh
− ∂η

µ

h

∂xj

)]
. (2.5)

As in [1], we may adapt some standard geometrical jet-structures, such as jet-extensions,
contact forms and jet-prolongations, to the newly defined space J (P ). In detail we have:

2.1. J -extension of sections

Given a section σ : M → J1P/G, we define its J -extension J σ : M → J (P ) as
J σ := ρ ◦ j1σ, j1σ : M → J1(J1P/G) indicating the standard first jet-extension of σ .

Any section γ : M → J (P ) is said to be holonomic if there exists a section σ : M →
J1P/G such that γ = J σ . Every holonomic section γ is then expressed locally as

γ : x → (
xi, a

µ

i (x), A
µ

ij (x) = 1
2

( ∂a
µ

i (x)

∂xj − ∂a
µ

j (x)

∂xi

))
.

2.2. Contact forms

Let us define on J (P ) the following 2-forms,

θµ := da
µ

j ∧ dxj + A
µ

ij dxi ∧ dxj (2.6)

where we have used the notation A
µ

ij = −A
µ

ji (henceforth systematically adopted) whenever
i > j .

Under changes of coordinates (2.3) and (2.5), we have the transformation laws

θ̄µ = Ad(γ −1)µν θν

thus ensuring the invariance of the module generated locally by the 2-forms (2.6).
The bundle spanned locally by the forms (2.6) is called the contact bundle over J (P )

and it is denoted by C(J (P )); sections η : J (P ) → C(J (P )) are called contact 2-forms on
J (P ).
4 Equivalently, one could use the covariant exterior differentiation D instead of the exterior differentiation d.
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Moreover, it is easily seen that a section γ : M → J (P ) is holonomic if and only if
γ ∗(η) = 0 for every contact form η.

2.3. J -prolongation of morphisms

Following [1], we characterize those bundle morphisms of J1P/G

J1P/G
�−−−→ J1P/G

| |
π | |π↓ ↓
M

χ−−−→ M

projecting to diffeomorphisms of M, whose ordinary jet-prolongations j1� on J1(J1P/G)

satisfy the requirement

ρ ◦ j1�(w1) = ρ ◦ j1�(w2) ∀ w1, w2 ∈ ρ−1(z) (2.7)

for any z ∈ J (P ). For every bundle morphism (�, χ) obeying ansatz (2.7), there is a
well-defined associated map J� : J (P ) → J (P ) expressed as

J�(z) := ρ ◦ j1�(w) ∀ w ∈ ρ−1(z) z ∈ J (E)

henceforth referred to as the J -prolongation of (�, χ).
By repeating the same arguments as in [1], we conclude that the most general bundle

morphism (�, χ) satisfying (2.7) is locally represented in the form


yi = χi(xj )

bν
i = �ν

i

(
xj , a

µ

j

) = ν
µ(x)

∂xr

∂yi
aµ

r + f ν
i (x)

(2.8)

where ν
µ(x) and f ν

i (x) are arbitrary functions on M. The only difference with respect to [1] is
the need to check that the formal expressions (2.8) are invariant under changes of coordinates
(2.3). In this connection, after a direct calculation, we end up with the transformation laws


ȳi = χ̄ i(x̄j )

b̄ν
i = ̄ν

µ(x̄)
∂x̄r

∂ȳi
āµ

r + f̄ ν
i (x̄)

where

̄ν
µ(x̄) := λ

η |x(x̄)
Ad(γ −1)νλ|χ(x(x̄))Ad(γ )ηµ|x̄

and

f̄ ν
j (x̄) :=

[
λ

ρ |x(x̄)

∂ȳs

∂x̄j |χ̄(x̄)
η̄ρ

s +
∂xi

∂x̄j
f λ

i |x(x̄)

]
Ad(γ −1)νλ|χ(x(x̄)) +

∂xi

∂x̄j
ην

i |χ(x(x̄))

thus proving the required invariance.
In local coordinates, the explicit expression of theJ -prolongationJ� of aJ -prolongable

bundle morphism (2.8) is given by [1]


yi = χi(xk)

bν
i = ν

µ(x) ∂xr

∂yi a
µ
r + f ν

i (x)

Bν
ij = ν

µA
µ

ks

∂xk

∂yi

∂xs

∂yj
+

1

2

[
∂ν

µ

∂xk

(
∂xk

∂yj

∂xr

∂yi
− ∂xk

∂yi

∂xr

∂yj

)
aµ

r +
∂f ν

i

∂xk

∂xk

∂yj
− ∂f ν

j

∂xk

∂xk

∂yi

]
.

As happens for standard jet-prolongations in ordinary jet-bundles [4], J -prolongations of
bundle morphisms are characterized by preserving contact forms and J -extensions (see
propositions 2.2 and 2.3 in [1]).
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2.4. J -prolongation of vector fields

Let us characterize those vector fields X on J1P/G, projecting to M, whose first jet-
prolongations J1(X) on J1(J1P/G) pass to the quotient J (P ).

Once again, by repeating some considerations, analogous to those made in [1], one can
prove that such vector fields are of the only form

X = εi(xj )
∂

∂xi
+

(
− ∂εk

∂xq
a

µ

k + Dµ
ν (xj )aν

q + Gµ
q (xj )

)
∂

∂a
µ
q

(2.9)

where εi(x),Dµ
ν (x) and G

µ
q (x) are arbitrary functions on M. As above, we have to verify

that the representations (2.9) are invariant under changes of coordinates (2.3). In this respect,
straightforward calculations show that the vector fields (2.9) undergo the transformation law

X = ε̄i ∂

∂x̄i
+

(
− ∂ε̄k

∂x̄q
ā

µ

k + D̄µ
ν āν

q + Ḡµ
q

)
∂

∂ā
µ
q

where

ε̄i := εk ∂x̄i

∂xk

D̄µ
ν := Dη

ρAd(γ )ρν Ad(γ −1)µη + Ad(γ )ηνε
i
∂Ad(γ −1)µη

∂xi

and

Ḡµ
q := εi ∂

∂xi

(
∂xk

∂x̄q
η

µ

k

)
+ Gν

j

∂xj

∂x̄q
Ad(γ −1)µν

thus proving the required result.
For each vector field (2.9), its J -prolongation J (X) : J (P ) → TJ (P ) is then well

defined as

J (X)(z) := ρ∗ρ−1(z)(j1(X)) ∀ z ∈ J (P ) (2.10)

amounting to taking the standard first jet-prolongation J1(X) and projecting it on J (P ). In
local coordinates we have [1]

J (X) = εi(xj )
∂

∂xi
+

(
− ∂εk

∂xq
a

µ

k + Dµ
ν (xj )aν

q + Gµ
q (xj )

)
∂

∂a
µ
q

+
∑
i<j

h
µ

ij

∂

∂A
µ

ij

where

h
µ

ij = 1

2

(
∂Dµ

ν

∂xj
aν

i − ∂Dµ
ν

∂xi
aν

j +
∂G

µ

i

∂xj
− ∂G

µ

j

∂xi

)
+ Dµ

ν Aν
ij +

(
A

µ

ki

∂εk

∂xj
− A

µ

kj

∂εk

∂xi

)
.

According to ordinary jet-prolongations [4], J -prolongations (2.10) are characterized by
preserving contact forms and are a Lie algebra (see proposition 2.4 and corollary 2.1 in [1]).

3. The field equations

Still following [1], in order to implement the field equations in the present framework, it is
convenient to introduce new coordinates on J (P ) of the form

xi = xi a
µ

i = a
µ

i F
µ

ji = −2A
µ

ij − aν
i a

ρ

j Cµ
ρν (3.1)

Cµ
ρν being the structure coefficients of the Lie algebra g.
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The idea is to take the components of the curvature tensor F
µ

ji as J -coordinates. From
equations (2.3) and (2.5) one can easily deduce the well-known gauge transformation law

F̄
µ

ji = Ad(γ −1)µν F ν
pq

∂xp

∂x̄j

∂xq

∂x̄i

for the curvature tensor F
µ

ji .
In this addendum, we consider Yang–Mills Lagrangians which can be expressed as

L = L
(
xi, a

µ

i , F
µ

ij

)
ds (3.2)

with ds := dx1 ∧ . . . ∧ dxm, and which are regular, namely which verify the condition
det

∥∥ ∂2L
∂F

µ

ij ∂F σ
pq

∥∥ = 0. We note that the standard pure Yang–Mills Lagrangian density

L = − 1
4F

µ

ij F
ij
µ

√−g satisfies this requirement, being now regular in view of the definition of
the new bundle J (P ).

There is a corresponding Poincaré–Cartan m-form on J (P ), associated with every
Lagrangian (3.2), expressed as [1]

�L = L ds + 1
2θµ ∧ Pµ (3.3)

where Pµ := ∂L
∂F

µ

ij

dsij , dsij := ∂
∂xi

∂
∂xj ds.

The field equations are deducible from a variational problem built on J (P ) through the
m-form (3.3). More precisely, they are seen to be the Euler–Lagrange equations associated
with the functional

AL(γ ) :=
∫

D

γ ∗(�L) ∀ section γ : D ⊂ M → J (P ),D compact domain.

In fact, the requirement of stationarity for the functional AL, together with the usual boundary
conditions used in variational calculus, turn out to be mathematically equivalent to the condition

γ ∗(X d�L) = 0 ∀ X ∈ D1(J (P )). (3.4)

in turn splitting into two sets of final equations, expressed respectively as

γ ∗(θµ) = 0 ∀ µ = 1, . . . , r (3.5a)

and

γ ∗
(

∂L
∂a

µ

i

+ Dj

∂L
∂F

µ

ji

)
= 0. (3.5b)

The first ones ensure the holonomy of the critical sections γ ,5 while the second ones represent
the actual field equations of the problem.

In connection with this, we conclude this addendum by briefly proposing the
‘Hamiltonian’ counterpart of the above-outlined construction.

To start with, borrowing from [2] for notation, let P ×Ad∗ g∗ be the bundle associated
with P through the co-adjoint action Ad∗ of G on its dual Lie algebra g∗, and let
�̄ := (P ×Ad∗ g∗) ⊗M �m−2(M) denote the tensor product over M between P ×Ad∗ g∗

and the space of the (m − 2)-forms on M. Also, let us consider the fibred product over
M �(P ) := J1P/G ×M �̄, referred to local coordinates xi, a

µ

i , P
ij
µ .

Then, the bundle �(P ) identifies in a natural way with the phase space of the theory. To
see this point, let us introduce the Legendre map from J (P ) to �(P ) by setting

P ij
µ := ∂L

∂F
µ

ij

. (3.6)

5 We stress that here the kinematic admissibility (3.5a) is obtained directly from the variational principle itself and it
is not an a priori imposed condition. This is due to the fact that in the present framework the Yang–Mills Lagrangians
become regular [1].
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Under the regularity condition det
∥∥ ∂2L

∂F
µ

ij ∂F σ
pq

∥∥ = 0, equations (3.6) define a (local)

diffeomorphism φL, fibred over J1P/G, according to the diagram

J (P )
φL−−−→ �(P )

| |
π | |π↓ ↓

J1P/G ==== J1P/G.

When the map φL is a global diffeomorphism, the Lagrangian L is said to be hyper regular.
In this case, through a pull-back procedure, we may endow the manifold �(P ) with the
Hamiltonian m-form6

�H := (
φ−1

L

)∗
�L. (3.7)

In this connection, we recall that the Poincaré–Cartan form �L may also be represented as
(see [1] for more details)

�L = L ds − 1

2

∂L
∂F

µ

ji

F
µ

ji ds − ∂L
∂F

µ

ji

�
µ

i ∧ dsj

where �
µ

i := da
µ

i + 1
2aν

i C
µ
ρνa

ρ

j dxj .
From this, it is easily seen that equations (3.6) and (3.7) lead to the explicit local expression

�H = −H ds − P ji
µ �

µ

i ∧ dsj (3.8)

H(x, a, P ) := −L(x, a, F (x, a, P )) + 1
2P

ji
µ F

µ

ji(x, a, P ) representing the Hamiltonian
density.

As happens in the Lagrangian setting J (P ), the field equations may be deduced from
a variational principle on �(P ), consisting in the study of the stationarity points for the
functional

AH (γ ) :=
∫

D

γ ∗(�H ) ∀ section γ : D ⊂ M → �(P ),D compact domain.

With standard boundary conditions, the ansatz δAH = 0 amounts to the equation

γ ∗(X d�H) = 0 ∀ X ∈ D1(�(P )). (3.9)

Taking vertical infinitesimal deformations X = X
µ

i
∂

∂a
µ

i

+
∑

i<j X
ij
µ

∂

∂P
ij
µ

only into account for

simplicity, we get

γ ∗(X d�H) = γ ∗
(

− ∂H
∂a

µ

i

ds − P ji
σ Cσ

ρµa
ρ

j ds + dP ji
µ ∧ dsj

)
X

µ

i |γ (x)

+ γ ∗
(

−1

2

∂H
∂P

ij
µ

ds − da
µ

j ∧ dsj − 1

2
aν

j C
µ
ρνa

ρ

i ds

)
Xij

µ |γ (x)
.

In view of the arbitrariness of X, the last equation splits into

∂H
∂P

ij
µ

= ∂a
µ

i

∂xj
− ∂a

µ

j

∂xi
− aν

j C
µ
ρνa

ρ

i (3.10a)

− ∂H
∂a

µ

i

+ DjP
ji
µ = 0. (3.10b)

6 When the Legendre map φL is only a local diffeomorphism, the same construction holds locally.
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Since ∂H
∂P

ij
µ

= F
µ

ij , equations (3.10a) yield the kinematic admissibility of the critical sections γ ,

while equations (3.10b) are the translation in Hamiltonian terms of the field equations (3.5b).
It is worth noting that the Poincaré–Cartan representation (3.4) of the field equations is

especially useful in the study of symmetries and conserved quantities. In this respect, it is
easily seen that all the results stated in [1] apply equally well to the present gauge-invariant
approach.
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